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The classical thermodynamic treatment of chemical equilibria in closed systems is
founded on theoretical formulations by J.W. Gibbs and Th. De Donder. These two the-
ories represent mathematically equivalent energy variation problems, related to each
other through a mass variable transformation analogous to coordinate transformations
in mechanics. Associated with the change in mass variables, chemical potentials of reac-
tive substances are defined differently in the two theories, and are subject to different
sets of constraints. Traditionally, the two sets of constraints have been merged into one,
by assuming that the chemical potential represents the same variable in both theories,
an assumption that is formally inconsistent with the difference in chemical potential
definitions. Merging of constraints is still possible if chemical potentials remain invari-
ant in value as a manifestation of symmetry under a Gibbs – De Donder mass transfor-
mation, but such symmetry has not been investigated. Here we demonstrate chemical
potential invariance by reformulating De Donder’s theory using Lagrange multipliers,
and combining the resulting constraints on chemical potentials with the classical Gibbs
constraints, in a phase equilibration thought experiment. A new form of the Gibbs–
Duhem (GD) relation is derived in the De Donder mass system. Comparing this rela-
tion to the classical GD equation in Gibbs’ component framework, subject to chemical
potential invariance, directly yields the linear operator mapping the De Donder mass
variables onto the set of Gibbs component masses. Results are illustrated for a simple
ion exchange reaction, in the process solving the longstanding problem of determin-
ing solid exchanger activities in ion exchanging mixtures. It is pointed out that, even
though the Gibbs and De Donder formulations are mathematically equivalent, the for-
mal structure of De Donder’s theory allows a more explicit and systematic treatment
of constraints, and also defines chemical masses in a form more naturally adapted to
typical experimental measurements.
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1. Introduction

The classical thermodynamic treatment of chemical equilibrium in closed
systems is founded on theoretical formulations by Gibbs [1] and De Donder [2].

In both theories, chemical equilibrium is formally treated as a problem of
energy minimization under virtual variation of chemical masses. However, the
two theories differ in the number and definition of mass variables [3] and in
the way constraints are handled. De Donder’s equilibrium formulation appears
as a constrained variational problem where masses of all chemical substances
are considered as state variables, subject to explicit chemical reaction constraints,
and masses are defined as the amounts of respective substances remaining in a
phase after chemical reactions and mass exchange with the environment. Gibbs’
theory represents the same problem under a mass variable transformation which
reduces De Donder’s constrained variational problem to one of free variation in
“component” masses, with masses now defined simply as the amounts of respec-
tive substances exchanged with the environment. The mass transformation relat-
ing the two theories closely parallels the well known coordinate transformations
of Lagrangian mechanics, by which variational problems in constrained coordi-
nates are transformed to equivalent formulations in freely variable generalized
coordinates [4,5]. The only essential difference is that, in chemical systems, the
roles of mechanical coordinates and forces are assumed by masses and chemical
potentials, respectively, and metric constraints between coordinate frameworks
are replaced by stoichiometric relations between sets of mass variables.

As in mechanics, where generalized forces and constraints imposed on them
are often altered by coordinate transformation [4,5], chemical potentials and
associated constraints are subject to change under a Gibbs – De Donder mass
transformation. De Donder’s great contribution to equilibrium thermodynamics
was discovery of new constraints on chemical potentials, namely the vanishing
chemical affinity conditions, which were absent in Gibbs’ analysis but occurred
naturally in the De Donder transformed mass system.

Apparently unrecognized in de Donder’s theory, however, was the fact
that not only constraints but also the very definition of the chemical potential
changed as a result of mass transformation. In describing the meaning of energy
derivatives with respect to mass variables in his theory, De Donder referred to
them simply as “the chemical potentials of Gibbs” [2]. Under this interpretation,
affinity conditions represented merely additional constraints on the Gibbs chem-
ical potentials, to be added to the set of constraints already obtained by Gibbs.
The same interpretation is reflected in other standard treatises on classical chem-
ical thermodynamics [6–8]. Formally, this interpretation is inconsistent with the
fact that mass variables, and hence chemical potentials, are defined differently in
the Gibbs and De Donder theories.

The above difference in chemical potential definitions does not, of course,
preclude the possibility that chemical potentials remain invariant in value
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during mass transformation, in which case the conventional practice of merg-
ing the Gibbs and De Donder constraints on chemical potentials is valid. How-
ever, if such invariance does exist, it must be demonstrated not on the basis of
assumed identical chemical potential definitions, but rather as symmetry imposed
by particular constraints on mass transformations. The author is not aware of
any analysis along these lines in the literature.

The objective here is to re-examine the fundamental differences and inter-
relationships of the Gibbs and De Donder equilibrium theories, with particu-
lar attention to mass variables, chemical potentials and associated constraints.
The question of symmetry is resolved, and some previously unrecognized ther-
modynamic relations are derived; specifically, a new form of the Gibbs–Duhem
equation and a general method for transforming between the Gibbs and De
Donder mass variables. For illustrative purposes, results are applied to simple ion
exchange systems, in the process yielding a general solution to the longstanding
problem of determining solid exchanger activities.

2. General features of the Gibbs and De Donder equilibrium formulations,
with emphasis on mass and chemical potential definitions and associated
constraints

2.1. De Donder theory

The fundamental postulate of De Donder’s affinity theory [2,6,7] is that the
energy of a chemically reactive homogeneous phase, not necessarily at equilib-
rium, depends generally on the instantaneous or “frozen” masses of all chemical
species in that phase. Under this postulate, for the j th phase in a system contain-
ing I = 1, 2, . . . , I distinct chemical substances, the variation in Gibbs energy Gj

at fixed temperature and pressure is determined by variation in the set {Mij } of
current masses as

dGj =
I∑

i=1

µij dMij , (1)

where µij is the chemical potential defined as

µij = ∂Gj

∂Mij

. (2)

Equilibrium in closed reactive systems is formally treated as a special case of
equation (1) where the energy function Gj acquires a stationarity condition, and
virtual variations in the Mij become subject to stoichiometric constraints. This
renders equation (1) as a classical constrained variational problem.

Two general methods exist for dealing with such problems, which are essen-
tially equivalent except in the way constraints are handled [4,5]. The first is to
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directly eliminate non-independent variables or coordinates together with con-
straint equations, transforming the remaining coordinates in the process, reduc-
ing the constrained variational problem to one of freely variable generalized
coordinates. Gibbs’ equilibrium formulation in terms of independently variable
component masses was of this type. The second approach is to formally retain
all coordinates as state variables, and explicitly introduce constraint equations
together with Lagrange multipliers into the energy stationarity condition, trans-
forming constraints on the coordinates into conditions on the conjugate energy
derivatives (chemical potentials in this case) required to maintain those con-
straints. De Donder’s theory was essentially of this nature, although it did not
formally involve Lagrange multipliers. In Appendix A, we apply the multiplier
method to equation (1) and show that it yields essentially the same results as
obtained by De Donder, with an important qualitative distinction to be dis-
cussed below.

The first De Donder condition on chemical potentials is the set of r =
1, 2, . . ., R chemical affinity constraints, which for a phase with R independent
chemical reactions, are given by:

Ir∑

i=1

νirµij = 0 r = 1, 2, . . . , R, (3)

where νir is the stoichiometric coefficient for the ith species in the rth chemical
reaction.

A second set of conditions is that chemical potential values for any given
substance must be equal in all j = 1, 2, . . . , J phases over which the substance
is distributed. This yields the set of I constraint relations:

µi1 = µi2 = · · · = µiJ i = 1, 2, . . . , I. (4)

In the derivations using Lagrange multipliers in Appendix A, the two sets of
constraints equations (3) and (4) result as independent conditions on the chemi-
cal potentials. In contrast, De Donder et al. [2,6] obtained equation (4) as merely
a special case of equation (3). This result may be traced to invalid assump-
tions regarding allowable mass variations in closed systems (see Appendix A for
details).

De Donder and Rysselberghe [2] noted, perceptively, that extensivity of
equation (1) in the case of macroscopically homogeneous phases implies a
Gibbs–Duhem relation in the form:

I∑

i=1

Mij dµij = 0. (5)

This relation contains a total of I terms, one for each chemical substance,
as opposed to only I–R terms as in the usual component-based Gibbs–Duhem
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relation. Equation (5) is generally valid under the same conditions as equation
(1), including states away from equilibrium. In the non-equilibrium case, equa-
tion (5) constitutes the only constraint on chemical potentials. However, in the
special case where the dµij correspond to changes between equilibrium states of
closed reactive systems, equation (5) becomes subject to the R affinity conditions
equation (3), with consequences to be discussed later.

2.2. Gibbs’ framework

Gibbs’ formulation of chemical equilibrium was tantamount to eliminating
the R non-independent mass variables in equation (1) together with the associ-
ated chemical reaction constraints, and transforming the remaining mass vari-
ables. This effectively reduced equation (1) to a problem of free variation in c =
I–R “component” masses (mij ), where variation of the energy function is given
by

dGj =
c∑

i=1

µ′
ij dmij (6)

with the chemical potential µ′
ij now defined as

µ′
ij = ∂Gj

∂mij

. (7)

A prime sign is used to denote formal difference between the Gibbs chemical
potential defined by equation (7) and its De Donder analogue in equation (2).

In principle, Gibbs’ component masses could have been defined as the
amounts of respective substances remaining in a phase after chemical reactions
and exchange with the environment, just as for the Mij in De Donder’s theory.
However, Gibbs chose an alternate definition (in effect a variable transforma-
tion on the Mij ) wherein component masses mij represent only the amounts of
respective species exchanged with the environment, i.e., substance masses which
added to or removed from phase j produce the De Donder equilibrium mass
composition {Mij }.1 The masses mij and Mij for a given species are equivalent

1Gibbs’ choice of mij rather than Mij for defining component masses is evidenced by his constraint
imposed on closed multiphase systems, stating that the mass variation for any given component sub-
stance must vanish when summed over all phases. For systems with chemically reactive substances,
such a constraint is generally valid only if component masses of a phase are defined as the amounts
of respective substances exchanged between the phase and its environment [see also equation (A.4)
in Appendix A], not as the amounts Mij of substances remaining in the phase at equilibrium. It is
precisely inapplicability of Gibbs’ constraint to the Mij for reactive substances that allows free vir-
tual variation of extents of reaction in closed multi-phase systems, leading to the chemical affinity
constraint (see for example, Ch. VI of Prigogine and Defay [6]).
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in the case of chemically inert substances, but are generally different for reactive
species.

Because of the generally different values of mij and Mij for reactive species,
there is no simple a-priori reason for assuming that the Gibbs chemical potential
µ′

ij = ∂Gj /∂mij in equation (7) is equivalent to the corresponding De Donder
chemical potential µij = ∂Gj /∂Mij of Eq. (2), the only general requirement on
µ′

ij and µij being that the energy variation dGj must remain invariant under mass
transformation. As noted earlier, if the values of µ′

ij and µij do remain invariant
under the transformation, this must be demonstrated as symmetry imposed by
particular constraints of the system.

For the transformed mass system [not the De Donder mass system of equa-
tion (1)] Gibbs derived his famous condition that in closed systems the chemical
potentials for the ith component must be equivalent in all phases in which that
component is distributed:

µ′
i1 = µ′

i2 = · · · = µ′
iJ i = 1, 2, . . . , c. (8)

Note that, although equation (8) is formally similar to the condition equation
(4) derived earlier for the De Donder chemical potentials, the two relations are
not equivalent because the respective mass variables and hence chemical poten-
tials are defined differently. Thus, equations (4) and (8) represent two different
sets of conditions which must be simultaneously satisfied.

The Gibbs–Duhem relation in component mass variables is:
c∑

i=1

mij dµ′
ij = 0. (9)

Due to the transformed mass system on which it is based, equation (9) con-
tains R fewer terms than its analogue equation (5) in the constrained De Donder
system.

Chemical affinity constraints are formally undefined in Gibbs’ framework.
This is a consequence of the fact that, in Gibbs’ implicit transformation of
the De Donder mass system, reaction constraint equations (and consequently
the affinity constraints) were eliminated along with non-independent mass vari-
ables. The effect is analogous to the formal elimination of forces of constraint in
mechanics by using coordinate transformations [4,5].

3. Invariance of chemical potential values under a Gibbs – De Donder mass
variable transformation

In what follows we first make use of a simple phase-equilibrium thought
experiment to show that the constraints equations (4) and (8) imply general
invariance of chemical potential values under a Gibbs–De Donder mass transfor-
mation. This invariance is then shown to imply, and also to be a consequence of,
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independently verifiable stoichiometric constraints among Gibbs and De Donder
mass variables.

3.1. Phase equilibration thought experiment

Consider an arbitrary phase (A) with heat-conducting but mass-imperme-
able flexible walls, containing any number of reactive and non-reactive sub-
stances at fixed environmental temperature and pressure. A second “test” phase
(B) contains the same chemically inert species as phase A but only one of the
reactive substances (X). Phase B is infinitesimally small relative to phase A, and
its walls are thermally conducting but rigid. The two phases are first permitted
to reach equilibrium individually, and then are allowed to equilibrate with each
other by mass exchange through a rigid semi-permeable membrane. The mem-
brane is permeable to reactive substance X and to all inert species, but is imper-
meable to any of the reactive substances different than X.

Since phase B is infinitesimally small relative to phase A, and always
remains small due to its rigid walls which prevent volume change, mass trans-
fer between the two phases is negligible relative to the amounts of substances
originally present in the infinitely large phase A. Thus, equilibration of the two
phases has no effect on the mole fraction composition of phase A. Also, any
osmotic pressure differentials associated with membrane semi-permeability are
borne by the rigid walls of phase B, so that the pressure of the flexible-walled
phase A remains equal to the imposed environmental pressure. Under these
conditions, the original chemical potential values of all substances in phase A

remain unaltered by equilibration with B.
Because of membrane impermeability to all reactive substances except X,

no reactive substance other than X can ever exist in phase B. Consequently X

never reacts chemically in B, so that mXB = MXB and therefore µ′
XB = µXB . It

follows by virtue of constraints equations (4) and (8) that in phase A (where X
does react chemically) we must have µ′

XA = µXA. The same argument holds for
any arbitrary substance designated as X, in any reactive phase of arbitrary com-
position. Thus, in general, the constraints equations (4) and (8) imply invariance
of Gibbs and De Donder chemical potential values for any given species under
a Gibbs–De Donder mass transformation, i.e.,

µ′
ij = µij . (10)

3.2. Relation of chemical potential invariance to stoichiometric constraints
between Gibbs and De Donder mass variables

The invariance property equation (10) allows direct comparison of Gibbs–
Duhem relations equations (5) and (9) in the De Donder and Gibbs frameworks,
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respectively, yielding the linear operator mapping the De Donder mass variables
onto the set of Gibbs component masses.

To demonstrate this, we first reduce the number of terms in equation (5)
to the same number of terms as in equation (9). It was noted earlier that when-
ever the chemical potential variations dµij in equation (5) correspond to changes
in equilibrium states of closed systems, equation (5) becomes subject to the R

chemical affinity constraints equation (3). Differentiating these constraints, and
substituting them into equation (5), we can eliminate the differentials dµij for R

substances such that the remaining c = I–R chemical potential variables repre-
sent the same (component) substances as do the dµ′

ij in equation (9). This trans-
forms equation (5) to a modified Gibbs–Duhem relation:

c∑

i=1

fij dµij = 0, (11)

where the coefficients fij are no longer strictly the masses Mij but rather linear
combinations of the Mij and stoichiometric coefficients νir of the system. A sim-
ple example of this type of transformation is given in Appendix B.

By virtue of the chemical potential invariance property equation (10), the
dµ′

ij and dµij in corresponding terms of the Gibbs–Duhem relations (9) and (11)
are equivalent in value. This imposes that the respective coefficients of the chem-
ical potentials, mij and fij , may differ at most by a single scalar λ, i.e.:

fij

mij

= λ i = 1, 2, . . . , c, (12)

where λ is the same for all c substances. To evaluate λ, we note that for chem-
ically inert substances, fij = Mij = mij (see Appendix B for illustration), in
which case λ = 1. Since λ must be same for all component substances in a mix-
ture, it follows that even if only one chemically inert species exists in the mixture,
even in infinitesimally small amounts, then the set of c equation (12) reduces uni-
formly to

fij = mij i = 1, 2, . . . , c. (13)

Purely reactive systems (containing no inert substances) may be represented
as the limiting case where the amount of inert substances approaches zero. Since
equation (13) apply even for infinitesimally small amounts of inert substances,
they would therefore seem generally applicable to purely reactive systems as well.
In case of doubt, equation (13) can always be verified independently on a case
by case basis, by testing consistency with stoichiometric constraints, as illustrated
in Appendix B.
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Each of the c identities equation (13) relates one of the Gibbs component
masses mij to a parameter fij containing some linear combination of stoichi-
ometric coefficients and De Donder masses Mij . The entire set of such rela-
tions defines the coordinate transformation mapping the set {Mij } of De Donder
chemical substance masses onto the set {mij } of c Gibbs component masses. We
write this as

mij = F
({

Mij

})
, (14)

where F is the linear operator uniquely mapping {Mij } onto {mij }. A corre-
sponding inverse operator F−1, uniquely mapping {mij} onto {Mij }, does not
exist because {Mij } contains more variables than {mij }. The reader is again
referred to Appendix B for a concrete example.

3.3. Invariance of chemical potentials inferred from equation (13)

The procedure used above to infer the mass transformation identities equa-
tion (13) parted from the independently demonstrated chemical potential invari-
ance conditions equation (10). We could equally well have proceeded in the
opposite direction. That is, given a set of verified stoichiometric constraints
equation (13) among Gibbs and De Donder mass variables, chemical potential
invariance follows as a consequence. To demonstrate this, we simply note that
comparison of the Gibbs–Duhem relations (9) and (11), subject to equation (13),
yields a condition on the chemical potentials analogous to equation (12):

µij

µ′
ij

= λ i = 1, 2, . . . , c (15)

which for systems with infinitesimal or greater amounts of inert substances yields
λ = 1, reducing equation (15) to the chemical potential invariance condition
equation (10). The implication is, of course, that the symmetry-producing con-
straints on the Gibbs–De Donder mass transformation, which we anticipated
earlier, are precisely the stoichiometric relations equation (13).

The reason we did not use equation (13) in the first place to derive chem-
ical potential invariance, and resorted instead to the phase equilibrium thought
experiment, was the difficulty in generally establishing the identities equation (13)
from first principles. That is, even though on a case by case basis one always
finds equation (13) to be valid, as in the example of Appendix B, this does not
prove that one will never encounter a case where such a condition is invalid, and
consequently equation (10) cannot be demonstrated in general. In contrast, by
using the phase equilibration thought experiment, we were able to generally dem-
onstrate equation (10), and from there the generality of equation (13).
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4. Summary and implications

This paper re-examines the classical Gibbs and De Donder theories of
chemical equilibrium, recognizing that the two theories represent the same varia-
tional problem under a mass transformation that changes the number and defini-
tion of chemical potential variables. It is shown that due to symmetry imposed
by stoichiometric constraints, chemical potential values remain invariant under
the Gibbs–De Donder mass transformation. It is this invariance which makes
possible the traditional merging of constraints on chemical potentials arising in
the Gibbs and De Donder theories. For example, even though affinity constraints
are formally defined only for the De Donder chemical potentials µij , the invari-
ance condition µij = µ′

ij makes it quantitatively indistinguishable to write the
constraints in terms of the µij or the corresponding Gibbs chemical potentials
µ′

ij .
A modified form of the Gibbs–Duhem relation [equation (11)] has been

derived, and used together with equation (9) to establish the mass transforma-
tion operator defined in equation (13). To the author’s knowledge, these results
have not been published elsewhere. The concepts are applied to ion exchange
systems in Appendix B, primarily for illustrative purposes, but also to demon-
strate a previously unrecognized general method for treating ion exchange sys-
tems. Historically, these systems have resisted rigorous thermodynamic analysis,
except under severely restrictive conditions [9,10]. It was precisely the study of
ion exchange systems which led the author to recognize the general symmetry
relations described here.

Although the Gibbs and De Donder equilibrium formulations represent
mathematically equivalent energy variation problems, their different formal
structures influence the respective applicabilities. In most experimental situa-
tions, the variables of interest and their interrelations are best accommodated
within De Donder’s theory. For example, in characterizing equilibrium systems,
the mass variables usually measured are of the De Donder type, i.e. the current
masses of all species, rather than the Gibbs exchanged component masses. Also,
by formally considering all chemical substances as state variables and making use
of Lagrange multipliers, De Donder framework allows systematic treatment of
constraints in ways that are difficult or impossible in Gibbs’ theory. Chemical
reaction stoichiometries, leading to the affinity conditions, are a classic example
of such constraints. Other, more “special” constraints could also in principle be
considered within De Donder’s framework. A case in point is the electro-neutral-
ity constraint among ionic species in electrolyte solutions. This constraint negates
the possibility of treating ionic species as independent variables in Gibbs’ theory,
leading to the prevalent notion that properties such as ionic masses and chemical
potentials are “extra-thermodynamic” in nature. However, there is no reason in
principle why, with aid of Lagrange multipliers, the electro-neutrality constraint
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and ionic masses cannot be incorporated as rigorously defined thermodynamic
entities within the mathematically equivalent De Donder framework.

Appendix A

A.1. Formulation of the multi-phase chemical equilibrium problem
in De Donder mass coordinates using Lagrange multipliers

A.1.1. Energy Stationarity condition

We write the overall Gibbs energy variation dG in a multiphase system as
the sum of energy variations dGj in the j = 1, 2, . . . , J individual phases, and
set dG to zero consistent with a stationarity condition at equilibrium. With each
of the dGj described by equation (1), the stationarity condition becomes

J∑

j=1

I∑

i=1

µij dMij = 0. (A.1)

Since the stationarity condition applies only to systems at equilibrium, the
parameter variations in (A.1) are to be interpreted as virtual variations around
the respective equilibrium values.

The dMij in equation (A.1) are subject to various constraints. In order to
determine the conditions imposed by these constraints on the chemical potentials
µij , we first formulate the constraints as vanishing auxiliary conditions with Lag-
range multipliers, then introduce them into the stationarity condition equation
(A.1), as follows:

A.1.2. Constraints and auxiliary condition due to allowable sources of mass
variations

Each of the mass variations dMij in equation (A.1) is determined by the
amount dmij of substance i exchanged between phase j and its environment,
plus any amount produced or consumed within phase j by chemical reactions.
We write this as

dMij − dmij −
Ri∑

r=1

νirdεirj = 0, (A.2)

where Ri is the number of independent chemical reactions involving species i, νir

is the stoichiometric coefficient of species i in the rth reaction„ and dεirj is the
extent of the rth reaction involving species i in phase j . Chemically non-reactive
species are included as special cases where dεirj = 0.
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Each of the constraints equation (A.2) can be multiplied times an arbitrary
scalar parameter, λij , and the resulting constraints added over all I chemical
substances and J phases, yielding the auxiliary equation

I∑

i=1

J∑

j=1

λij

(
dMij − dmij −

Ri∑

r=1

νirdεirj

)
= 0, (A.3)

where the indices “ij” denote that, in general, λij has a different value for each
species i and phase j .

A.1.3. Constraints and auxiliary condition imposed by system closure

In a closed multi-phase system, the dmij of equation (A.2) are subject to
the constraint that the total amount of a given species i exchanged between the
system and its external environment must vanish. Expressing the total exchanged
mass as the sum of exchanges in the individual phases, the constraint becomes

J∑

j=1

dmij = 0. (A.4)

Multiplying equation (A.4) for each species i by a multiplier λi, and summing
over all I species yields the auxiliary condition

I∑

i=1

λi

J∑

j=1

dmij =
J∑

j=1

I∑

i=1

λidmij = 0. (A.5)

The single index “i” indicates that the multiplier λi is single-valued for the
ith species regardless of how it is distributed between phases.

A.1.4. Constraints and auxiliary condition imposed by restrictions on chemical
reactions

The dεirj in equation (A.2) are subject to the conditions that, for each of
the substances i = 1, 2, . . . , Ir participating in the rth reaction in phase j ,

dε1rj = dε2rj = · · · = dεIrj .

= dεrj (A.6)

This yields a constraint for each substance i and reaction r in the j th phase

νirdεirj − νirdεrj = 0. (A.7)
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Multiplying each constraint times a corresponding scalar λirj , summing
over all substances, reactions and phases, and collecting terms, yields

J∑

j=1

R∑

r=1

Ir∑

i=1

λirj νirdεirj −
J∑

j=1

R∑

r=1

(
Ir∑

i=1

λirj νir

)
dεrj = 0. (A.8)

A.1.5. Combined stationarity and auxiliary conditions

Subtracting the auxiliary equations (A.3), (A.5) and (A.8) from the energy
stationarity condition equation (A.1), and rearranging, yields

J∑

j=1

I∑

i=1

(
µij − λij

)
dMij +

J∑

j=1

I∑

i=1

(
λij − λi

)
dmij +

J∑

j=1

R∑

r=1

Ir∑

i=1

(
λij νir − λirj νir

)
dεirj

+
J∑

j=1

R∑

r=1

(
Ir∑

i

λirj νir

)
dεrj = 0, (A.9)

where use has been made of the commutation identity:

J∑

j=1

I∑

i=1

Ri∑

r=1

λirj νirdεirj =
J∑

j=1

R∑

r=1

Ir∑

i=1

λirj νirdεirj . (A.10)

By virtue of the Lagrange multipliers, equation (A.9) can be satisfied by
causing all the coefficients of the differentials to vanish. For the first three sum-
mation series in equation (A.9), identical vanishing of the coefficients yields that

λirj = λij = λi = µij . (A.11)

As noted earlier, the multiplier λi for a given species i has the same value in all
phases. Thus, equation (A.11) implies that

µi1 = µi2 = · · · = µ,iJ = µi, (A.12)

which is equation (4) in the main text.
Vanishing of coefficients in the last summation series of equation (A.9),

together with identities equations (A.11) and (A.12), yields the chemical affinity
constraint for each chemical reaction

I∑

i=1

νirµi = 0 r = 1, 2, . . . , R. (A.13)

It should be noted that relations equations (A.12) and (A.13) are mutually inde-
pendent. In contrast, De Donder and Van Rysselberghe [2] and Prigogine and
Defay [6] derived equation (A.12) as a merely special case of equation (A.13),
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in which case the two relations cannot be considered independent. The apparent
contradiction is resolved noting that the latter derivations implicitly assume arbi-
trary virtual variations in total mass exchange between phases in a closed sys-
tem, which is incorrect because these variations vanish as recognized by Gibbs
[see also equation (A.4) above].

Appendix B

B.1. Relations between Gibbs–Duhem relations in the Gibbs and De Donder
frameworks for a binary ion exchange system

Consider an aqueous suspension of electrically charged colloidal particles,
which exchange counter-ions A+a and B+b with surrounding aqueous electrolyte
species ACla and BClb according to the reaction

bAX + aBClb ↔ aBX + bACla. (B.1)

Here X refers to the amount of negatively charged colloidal surface required to
balance a mole of counter-ion A+a or B+b, a and b are respective valencies, and
Cl represents a common electrolyte anion such as chloride. The system contains
5 chemical species, i.e. the reactants in equation (B.1) plus liquid water (w), and
4 independently variable components. We choose AX, ACla, BClb and water as
components, leaving BX as the “non-component” substance.

The component-based Gibbs–Duhem relation Eq. (9) for the designated set
of component substances is:

mAXdµ′
AX + mBClbdµ′

BClb
+ mACla dµ′

ACla
+ mwdµ′

w = 0. (B.2)

The Gibbs–Duhem relation equation (5) for the system in the De Donder
framework is

MAXdµAX + MBXdµBX + MBClbdµBClb + MACla dµACla + Mwdµw = 0 (B.3)

subject to the affinity constraint which we write in differential form as

bdµAX + adµBClb − adµBX − bdµACla = 0. (B.4)

Eliminating the “non-component” differential dµBX from equation (B.3)
using equation (B.4), gives the modified Gibbs–Duhem relation equation (11) in
the form

(
MAX + b

/
aMBX

)
dµAX + (

MBClb + MBX

)
dµBClb

+
(
MACla − b/

aMBX

)
dµACla + Mwdµw = 0. (B.5)
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The coefficients of the dµi in equation (B.5) may be recognized as the func-
tions fij of equation (11), so that identities equation (13) assume the specific
form:

fAX = MAX + b/
aMBX = mAX, (B.6a)

fBClb = MBClb + MBX = mBClb , (B.6b)

fACla = MACla − b/
aMBX = mACla , (B.6c)

fw = Mw = mw. (B.6d)

These relations, inferred solely from equations (10) and (13), can be verified
independently by checking their consistency with stoichiometric mass balance
constraints under the designated choice of components. For instance, equation
(B.6a) reflects the fact that the MAX moles of component species AX remain-
ing at equilibrium are equal to the mAX moles of AX added originally to the
mixture, minus the moles of AX consumed in the ion exchange reaction with
electrolyte species BCl. The number of moles of AX consumed in this reaction
is given by the term b/a MBX, where the MBX moles of non-component spe-
cies BX appearing in the system provide a measure of the extent of reaction.
Inspection of the remaining identities equations (B.6b–d) shows similar consis-
tency with stoichiometric constraints.

The set of linearly independent relations equations (B.6a–d) defines the
coordinate transformation equation (14) mapping the De Donder mass vector
{Mij } onto the Gibbs component mass vector {mij }. Note the non-invertible
nature of this transformation; i.e., specifying only the set {Mij } is sufficient to
define {mij }, but specifying {mij } does not allow determining {Mij } without addi-
tional information such as equilibrium constants and the set of state functions
µij ({Mij }).

It should be noted that, in the case of reactive substances, the above trans-
formation often yields negative values for the component masses mij . Such quan-
tities may at first glance seem physically absurd, but in fact are easily achieved
experimentally as shown in [9].

Equation (B.5) represents a general solution to the longstanding problem
of determining solid exchanger activities in ion exchanging mixtures. Existing
thermodynamic methods, based on a formulation of Gaines and Thomas [10],
are severely restrictive in that exchanger activities can only be measured under
conditions of constant water potential and negligible electrolyte adsorption on
the solid phase. None of these restrictions apply to equation (B.5). Note that
the only parameter in this equation which cannot be measured experimentally
in aqueous ion exchange systems is the exchanger chemical potential µAX. This
allows direct determination of µAX by integrating equation (B.5) in terms of
the measurable parameters. [An equivalent result was obtained earlier by the
author in (9), but using a much more cumbersome derivation]. Even though here
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equation (B.5) is applied only to binary ion exchange systems, it can readily be
generalized to include any number of electroytes and exchanger species.
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